37 research outputs found

    AIDS and Cancer Specimen Resource (ACSR)

    Get PDF
    The AIDS and Cancer Specimen Resource (ACSR) has four regional biorepositories (RBRs) in the United States and one in South Africa. The ACSR is funded by the National Cancer Institute (NCI) of the National Institutes of Health (United States) to support investigators studying HIV/AIDS and HIV/AIDS-associated malignancies. The ACSR inventory includes more than 450,000 annotated HIV-positive biospecimens from over 10,000 individuals and 100,000 HIV-negative controls from approximately 4,250 individuals, reflecting the pre-highly active antiretroviral therapy (HAART) and post-HAART era of the HIV epidemic, as well as selected geographic regions heavily impacted by this global pandemic. Funding statement: The U.S. NIH National Cancer Institute has funded the ACSR since 1994. The present award is UM1CA181255

    An informatics model for tissue banks – Lessons learned from the Cooperative Prostate Cancer Tissue Resource

    Get PDF
    BACKGROUND: Advances in molecular biology and growing requirements from biomarker validation studies have generated a need for tissue banks to provide quality-controlled tissue samples with standardized clinical annotation. The NCI Cooperative Prostate Cancer Tissue Resource (CPCTR) is a distributed tissue bank that comprises four academic centers and provides thousands of clinically annotated prostate cancer specimens to researchers. Here we describe the CPCTR information management system architecture, common data element (CDE) development, query interfaces, data curation, and quality control. METHODS: Data managers review the medical records to collect and continuously update information for the 145 clinical, pathological and inventorial CDEs that the Resource maintains for each case. An Access-based data entry tool provides de-identification and a standard communication mechanism between each group and a central CPCTR database. Standardized automated quality control audits have been implemented. Centrally, an Oracle database has web interfaces allowing multiple user-types, including the general public, to mine de-identified information from all of the sites with three levels of specificity and granularity as well as to request tissues through a formal letter of intent. RESULTS: Since July 2003, CPCTR has offered over 6,000 cases (38,000 blocks) of highly characterized prostate cancer biospecimens, including several tissue microarrays (TMA). The Resource developed a website with interfaces for the general public as well as researchers and internal members. These user groups have utilized the web-tools for public query of summary data on the cases that were available, to prepare requests, and to receive tissues. As of December 2005, the Resource received over 130 tissue requests, of which 45 have been reviewed, approved and filled. Additionally, the Resource implemented the TMA Data Exchange Specification in its TMA program and created a computer program for calculating PSA recurrence. CONCLUSION: Building a biorepository infrastructure that meets today's research needs involves time and input of many individuals from diverse disciplines. The CPCTR can provide large volumes of carefully annotated prostate tissue for research initiatives such as Specialized Programs of Research Excellence (SPOREs) and for biomarker validation studies and its experience can help development of collaborative, large scale, virtual tissue banks in other organ systems

    A Novel Cross-Disciplinary Multi-Institute Approach to Translational Cancer Research: Lessons Learned from Pennsylvania Cancer Alliance Bioinformatics Consortium (PCABC)

    Get PDF
    Background: The Pennsylvania Cancer Alliance Bioinformatics Consortium (PCABC, http://www.pcabc.upmc.edu) is one of the first major project-based initiatives stemming from the Pennsylvania Cancer Alliance that was funded for four years by the Department of Health of the Commonwealth of Pennsylvania. The objective of this was to initiate a prototype biorepository and bioinformatics infrastructure with a robust data warehouse by developing a statewide data model (1) for bioinformatics and a repository of serum and tissue samples; (2) a data model for biomarker data storage; and (3) a public access website for disseminating research results and bioinformatics tools. The members of the Consortium cooperate closely, exploring the opportunity for sharing clinical, genomic and other bioinformatics data on patient samples in oncology, for the purpose of developing collaborative research programs across cancer research institutions in Pennsylvania. The Consortium’s intention was to establish a virtual repository of many clinical specimens residing in various centers across the state, in order to make them available for research. One of our primary goals was to facilitate the identification of cancer specific biomarkers and encourage collaborative research efforts among the participating centers.Methods: The PCABC has developed unique partnerships so that every region of the state can effectively contribute and participate. It includes over 80 individuals from 14 organizations, and plans to expand to partners outside the State. This has created a network of researchers, clinicians, bioinformaticians, cancer registrars, program directors, and executives from academic and community health systems, as well as external corporate partners - all working together to accomplish a common mission. The various sub-committees have developed a common IRB protocol template, common data elements for standardizing data collections for three organ sites, intellectual property/tech transfer agreements, and material transfer agreements that have been approved by each of the member institutions. This was the foundational work that has led to the development of a centralized data warehouse that has met each of the institutions’ IRB/HIPAA standards.Results: Currently, this “virtual biorepository” has over 58,000 annotated samples from 11,467 cancer patients available for research purposes. The clinical annotation of tissue samples is either done manually over the internet or semiautomated batch modes through mapping of local data elements with PCABC common data elements. The database currently holds information on 7188 cases (associated with 9278 specimens and 46,666 annotated blocks and blood samples) of prostate cancer, 2736 cases (associated with 3796 specimens and 9336 annotated blocks and blood samples) of breast cancer and 1543 cases (including 1334 specimens and 2671 annotated blocks and blood samples) of melanoma. These numbers continue to grow, and plans to integrate new tumor sites are in progress. Furthermore, the group has also developed a central web-based tool that allows investigators to share their translational (genomics/proteomics) experiment data on research evaluating potential biomarkers via a central location on the Consortium’s web site.Conclusions: The technological achievements and the statewide informatics infrastructure that have been established by the Consortium will enable robust and efficient studies of biomarkers and their relevance to the clinical course of cancer. Studies resulting from the creation of the Consortium may allow for better classification of cancer types, more accurate assessment of disease prognosis, a better ability to identify the most appropriate individuals for clinical trial participation, and better surrogate markers of disease progression and/or response to therapy

    Synoptic tool for reporting of hematological and lymphoid neoplasms based on World Health Organization classification and College of American Pathologists checklist

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Synoptic reporting, either as part of the pathology report or replacing some free text component incorporates standardized data elements in the form of checklists for pathology reporting. This ensures the pathologists make note of these findings in their reports, thereby improving the quality and uniformity of information in the pathology reports.</p> <p>Methods</p> <p>The purpose of this project is to develop the entire set of elements in the synoptic templates or "worksheets" for hematologic and lymphoid neoplasms using the World Health Organization (WHO) Classification and the College of American Pathologists (CAP) Cancer Checklists. The CAP checklists' content was supplemented with the most updated classification scheme (WHO classification), specimen details, staging as well as information on various ancillary techniques such as cytochemical studies, immunophenotyping, cytogenetics including Fluorescent In-situ Hybridization (FISH) studies and genotyping. We have used a digital synoptic reporting system as part of an existing laboratory information system (LIS), CoPathPlus, from Cerner DHT, Inc. The synoptic elements are presented as discrete data points, so that a data element such as tumor type is assigned from the synoptic value dictionary under the value of tumor type, allowing the user to search for just those cases that have that value point populated.</p> <p>Results</p> <p>These synoptic worksheets are implemented for use in our LIS. The data is stored as discrete data elements appear as an accession summary within the final pathology report. In addition, the synoptic data can be exported to research databases for linking pathological details on banked tissues.</p> <p>Conclusion</p> <p>Synoptic reporting provides a structured method for entering the diagnostic as well as prognostic information for a particular pathology specimen or sample, thereby reducing transcription services and reducing specimen turnaround time. Furthermore, it provides accurate and consistent diagnostic information dictated by pathologists as a basis for appropriate therapeutic modalities. Using synoptic reports, consistent data elements with minimized typographical and transcription errors can be generated and placed in the LIS relational database, enabling quicker access to desired information and improved communication for appropriate cancer management. The templates will also eventually serve as a conduit for capturing and storing data in the virtual biorepository for translational research. Such uniformity of data lends itself to subsequent ease of data viewing and extraction, as demonstrated by rapid production of standardized, high-quality data from the hemopoietic and lymphoid neoplasm specimens.</p

    The development of common data elements for a multi-institute prostate cancer tissue bank: The Cooperative Prostate Cancer Tissue Resource (CPCTR) experience

    Get PDF
    BACKGROUND: The Cooperative Prostate Cancer Tissue Resource (CPCTR) is a consortium of four geographically dispersed institutions that are funded by the U.S. National Cancer Institute (NCI) to provide clinically annotated prostate cancer tissue samples to researchers. To facilitate this effort, it was critical to arrive at agreed upon common data elements (CDEs) that could be used to collect demographic, pathologic, treatment and clinical outcome data. METHODS: The CPCTR investigators convened a CDE curation subcommittee to develop and implement CDEs for the annotation of collected prostate tissues. The draft CDEs were refined and progressively annotated to make them ISO 11179 compliant. The CDEs were implemented in the CPCTR database and tested using software query tools developed by the investigators. RESULTS: By collaborative consensus the CPCTR CDE subcommittee developed 145 data elements to annotate the tissue samples collected. These included for each case: 1) demographic data, 2) clinical history, 3) pathology specimen level elements to describe the staging, grading and other characteristics of individual surgical pathology cases, 4) tissue block level annotation critical to managing a virtual inventory of cases and facilitating case selection, and 5) clinical outcome data including treatment, recurrence and vital status. These elements have been used successfully to respond to over 60 requests by end-users for tissue, including paraffin blocks from cases with 5 to 10 years of follow up, tissue microarrays (TMAs), as well as frozen tissue collected prospectively for genomic profiling and genetic studies. The CPCTR CDEs have been fully implemented in two major tissue banks and have been shared with dozens of other tissue banking efforts. CONCLUSION: The freely available CDEs developed by the CPCTR are robust, based on "best practices" for tissue resources, and are ISO 11179 compliant. The process for CDE development described in this manuscript provides a framework model for other organ sites and has been used as a model for breast and melanoma tissue banking efforts

    Availability and quality of paraffin blocks identified in pathology archives: A multi-institutional study by the Shared Pathology Informatics Network (SPIN)

    Get PDF
    BACKGROUND: Shared Pathology Informatics Network (SPIN) is a tissue resource initiative that utilizes clinical reports of the vast amount of paraffin-embedded tissues routinely stored by medical centers. SPIN has an informatics component (sending tissue-related queries to multiple institutions via the internet) and a service component (providing histopathologically annotated tissue specimens for medical research). This paper examines if tissue blocks, identified by localized computer searches at participating institutions, can be retrieved in adequate quantity and quality to support medical researchers. METHODS: Four centers evaluated pathology reports (1990–2005) for common and rare tumors to determine the percentage of cases where suitable tissue blocks with tumor were available. Each site generated a list of 100 common tumor cases (25 cases each of breast adenocarcinoma, colonic adenocarcinoma, lung squamous carcinoma, and prostate adenocarcinoma) and 100 rare tumor cases (25 cases each of adrenal cortical carcinoma, gastro-intestinal stromal tumor [GIST], adenoid cystic carcinoma, and mycosis fungoides) using a combination of Tumor Registry, laboratory information system (LIS) and/or SPIN-related tools. Pathologists identified the slides/blocks with tumor and noted first 3 slides with largest tumor and availability of the corresponding block. RESULTS: Common tumors cases (n = 400), the institutional retrieval rates (all blocks) were 83% (A), 95% (B), 80% (C), and 98% (D). Retrieval rate (tumor blocks) from all centers for common tumors was 73% with mean largest tumor size of 1.49 cm; retrieval (tumor blocks) was highest-lung (84%) and lowest-prostate (54%). Rare tumors cases (n = 400), each institution's retrieval rates (all blocks) were 78% (A), 73% (B), 67% (C), and 84% (D). Retrieval rate (tumor blocks) from all centers for rare tumors was 66% with mean largest tumor size of 1.56 cm; retrieval (tumor blocks) was highest for GIST (72%) and lowest for adenoid cystic carcinoma (58%). CONCLUSION: Assessment shows availability and quality of archival tissue blocks that are retrievable and associated electronic data that can be of value for researchers. This study serves to compliment the data from which uniform use of the SPIN query tools by all four centers will be measured to assure and highlight the usefulness of archival material for obtaining tumor tissues for research

    Assessment of the Role of Renal Organic Anion Transporters in Drug-Induced Nephrotoxicity

    Get PDF
    In the present review we have attempted to assess the involvement of the organic anion transporters OAT1, OAT2, OAT3, and OAT4, belonging to the SLC22 family of polyspecific carriers, in drug-induced renal damage in humans. We have focused on drugs with widely recognized nephrotoxic potential, which have previously been reported to interact with OAT family members, and whose underlying pathogenic mechanism suggests the participation of tubular transport. Thus, only compounds generally believed to cause kidney injury either by means of direct tubular toxicity or crystal nephropathy have been considered. For each drug, or class of agents, the evidence for actual transport mediated by individual OATs under in vivo conditions is discussed. We have then examined their role in the context of other carriers present in the renal proximal tubule sharing certain substrates with OATs, as these are critical determinants of the overall contribution of OAT-dependent transport to intracellular accumulation and transepithelial drug secretion, and thus the impact it may have in drug-induced nephrotoxicity

    Evidence for light-by-light scattering and searches for axion-like particles in ultraperipheral PbPb collisions at root s(NN)=5.02 TeV

    Get PDF
    Evidence for the light-by-light scattering process, gamma gamma -> gamma gamma, in ultraperipheral PbPb collisions at a centre-of-mass energy per nucleon pair of 5.02 TeV is reported. The analysis is conducted using a data sample corresponding to an integrated luminosity of 390 mu b(-1) recorded by the CMS experiment at the LHC. Light-by-light scattering processes are selected in events with two photons exclusively produced, each with transverse energy E-T(gamma) > 2 GeV, pseudorapidity vertical bar eta(gamma)vertical bar 5 GeV, diphoton transverse momentum p(T)(gamma gamma) gamma gamma) = 120 +/- 46(stat) +/- 28(syst) +/- 12(theo) nb, is consistent with the standard model prediction. The m(gamma gamma) distribution is used to set new exclusion limits on the production of pseudoscalar axion-like particles, via the gamma gamma -> a -> gamma gamma process, in the mass range m(a) = 5-90 GeV. (C) 2019 The Author(s). Published by Elsevier B.V.Peer reviewe

    AIDS and cancer specimen resource (ACSR)

    No full text
    The AIDS and Cancer Specimen Resource (ACSR) has four regional biorepositories (RBRs) in the United States and one in South Africa. The ACSR is funded by the National Cancer Institute (NCI) of the National Institutes of Health (United States) to support investigators studying HIV/AIDS and HIV/AIDS-associated malignancies. The ACSR inventory includes more than 450,000 annotated HIV-positive biospecimens from over 10,000 individuals and 100,000 HIV-negative controls from approximately 4,250 individuals, reflecting the pre-highly active antiretroviral therapy (HAART) and post-HAART era of the HIV epidemic, as well as selected geographic regions heavily impacted by this global pandemic
    corecore